Volume 1, Number 2, 16th September 1997

News Letter

The International Publication for DECT Markets, Applications, and Technology

EDITORIAL BY PETER R. MARTIN (SWISSCOM), BOARD MEMBER

DECT in Public Access Networks

"Public Access based on Wireless Local Loop applications are becoming the cost effective alternative to Fixed Wired Networks". This sentence which some years ago was completely unthinkable is now the reality. Hundreds of thousands of lines have been installed throughout the world, and new contracts are signed every week, wireless is a reality and no one can say that it has not covered expectations.

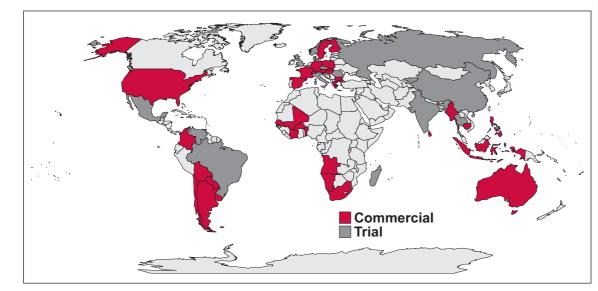
In my opinion DECT has proved itself as the best suited Wireless Local Loop

infrastructure for the largest number of scenarios. The future evolution of the markets makes DECT the real solution for cost efficient and technologically sound investment for the operators. DECT enables operators to provide high potential systems for the development of basic services or integrating higher data rates, digital interfaces or mobility.

Easy provision of connections, low cost per line, maintenance benefits, wide range of services: this is a list of advantages which are inherent to the DECT wireless applications that have driven the development of these solutions. For SWISSCOM, DECT is the favourite standard which allows a fast and effective way to deploy network expansion in new domestic and foreign markets thus increasing the functionality of the existing fixed networks.

This DECT Forum News Letter is dedicated to the growing market of DECT Wireless Local Loop (WLL).

A PERFECT TECHNOLOGY FOR ACCESS PROVIDER


DECT in the Wireless Local Loop

DECT has been awarded more contracts for Fixed Wireless Local Loop services than any other technology during 1996. And it seems that in 1997 the share of this technology will even increase. Why this success? What makes DECT sell better than the other technologies? Is it only because it is first choice of leading manufacturers or is there a technological reason for this superiority?

New telecommunication networks enable economic growth in many parts of the world.

Operators are working to rise the penetration of telecommunication services at the highest possible speed and at lowest possible costs. DECT local loop solutions offer high rollout speed at low cost

The DECT standard has been accepted in a large number of countries world-wide. Currently DECT has been accepted and introduced in Europe, and in most of the countries of America, Africa, Asia and Australia. DECT is now operational in more than 30 countries. The map shows the countries

The DECT Forum Mission

DECT Forum is an international organisation formed by leading telecom operators and manufacturers. DECT Forum has representatives in all the major geographical regions.

DECT Forum provides a unique platform for the exchange of experience between users, operators, regulation and standardisation bodies to ensure the sustained growth and acceptance of DECT world-wide.

Contents

Editorial, by Peter R. Martin	1
DECT in the Wireless Local Loop	1
South Africa Chooses DECT	2
DECT Public Systems	3
DECT Takes Off In Brazil	4
News from the Forum	2
Forum Members	2
Status of Standards	3

Published by **DECT** Forum P. O. Box 215 CH-4503 Solothurn Switzerland http://www.dect.ch

Tel. +41(32)6217041 Fax. +41(32)6217043 heinz ochsner@ibm.net

DECT Forum News Letter

News Bits

A DECT Conference hold 24th and 25th June in Paris was again attended by delegates from all over the world. Participants were informed about the latest developments in the areas RLL, CTM, as well as the role Intelligent Network (IN) services will play in the near future. It was also mentioned that DECT systems have become operational in many areas of the world including in those areas where the respective operators had full freedom in choosing their preferred technology.

On the following day, the delegates could attend a work shop to learn more about the huge potential of DECT to evolve into the next generation mobile technology (UMTS).

The 2nd Annual Indian DECT Forum Symposium took place on the 8th of August 1997 in New Delhi with a strong presence of participants from the Ministry, Operators and Manufacturers. The Minister of Telecommunications of India, Mr. Beni Verma chaired the opening session.

During the Symposium the question of having the frequency allocated for DECT has been seen from the Ministry as only a question of time while the DECT Forum members attending: Alcatel, Ericsson, Siemens, Crompton Greaves, C-DOT, presented contributions on DECT applications and other different topics..

DECT Forum Member Swiss Telecom PTT which is awaiting to become a share holding company next year will change its name to "Swisscom". The name change becomes effective 1st October 1997. that already have committed to public commercial DECT services. It also shows the countries with trial systems, which are operating to demonstrate the power of DECT in public applications (see also the list on the next page).

In Radio, or Wireless, in the Local Loop (RLL/WLL) the DECT infrastructure, base stations (BS) and controllers, are connected to a local exchange (LE), as is illustrated in the diagram. Being wireless means

that domestic installation is easier and quicker service provision can start immediately. DECT's large capacity allows coverage to be built up on an as-needed basis so up-front investment is reduced. Subscribers enjoy a voice quality like wireline and the availability advanced services as they appear in the market.

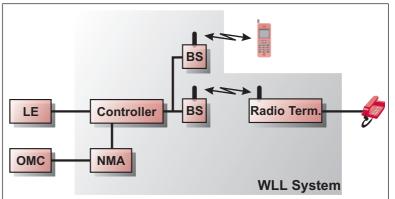
DECT is flexible and provides access to many types of telecommunication networks, supporting numerous different applications and services. The standard has been designed from the start with this aim. The range of DECT supported services in Wireless Local Loop includes voice telephony, fax, modem, dedicated data access, switched data access, ISDN, E-mail, Internet, X.25 and many other services in a cost efficient manner.

DECT provides solutions for densely populated areas with its traffic capacity of 10.000 Erlang/km². It also provides a large area coverage with cells which can range of up to 15 km radius. It can be combined with point-to-multipoint backhaul networks for low density areas or provide the whole Access Network in dense urban areas. DECT is much more resistant to noise than other technologies, yet provides no interference to adjacent bands. DECT provides simple implementation with no frequency planning requirements thanks to its Dynamic Channel Selection (DCS). This also allows the coexistence of several operators and private users in the same area

FORUM MEMBERS

New Full Members

Advanced Fibre Communications, Petaluma, Ca., U.S.A. Airtel Móvil, Madrid, Spain CSyS, Munich, Germany Freepoint Telecom, Walnut Creek, Ca., U.S.A. Telcom, Moscow, Russia Urmet S.p.A., Milano, Italy


New Associated Members

Blitz Limited, Sliema, Malta ComLab, Kjeller, Norway GMD Fokus, Berlin, Germany Shree Tele Network Pvt. Ltd., Ahmedabad, India Wavecom, Issy-les-Moulineaux, France

New Board Members

Enrico Venuti, Telecom Italia, Italy, replacing Sandro Dionisi

see http://www.dect.ch for a complete list of DECT Forum Members

without the need for frequency allocation.

Leading manufacturers have chosen DECT for their public Wireless Local loop systems. Operators benefit from multi vendor solutions to speed up innovation and decrease cost (i.e. interoperability with RAP or V5.x interfaces in the Access Network). DECT operators will have access in the future to existing terminal populations (with GAP) DECT provides these benefits that provides to new entrants and to established operators alike. In conclusion, DECT is a proven technology chosen by the lead manufacturers as being the best for Wireless Local loop. It has been extensively deployed and provides a future proof choice for an access network ready to incorporate new services as they appear. DECT Wireless Local Loop systems reduce upfront investment, and give faster implementation times than cable based solution.

Few of the reasons for the choice of DECT include:

- a large number of operators around the world are already using public DECT WLL networks today;
- secure and high quality access to services such as: voice, fax, modems, data, Internet, ISDN, multimedia;
- ease of deployment with no need for frequency planning;
- high resistance to noise, no interference with other systems;
- DECT is a proven and accepted technology;
- low cost of deployment, reduced upfront investment;
- end user satisfaction.

DECT IN AFRICA

South Africa Chooses DECT

Two DECT Forum Member companies have been awarded a Rand 2 billion contract to provide wireless technology for the provision of more than 400 000 lines to under-serviced areas over the next two years.

These lines will be served with Wireless Local Loop equipment using the DECT (Digital Enhanced Cordless Telecommunications) technology. Different scenarios are foreseen and to be provided with pure DECT systems or with DECT combined with point-to-multipoint radio backhaul.

Telkom, which successfully used DECT technology in field trials during 1996/97, expects the first services to be installed within by this autumn with rollout rapidly continuing over the next two years. The systems will be deployed in

DECT PUBLIC SYSTEMS WORLD-WIDE Country Operator Supplier System

Country	Operator	Supplier	System
Africa &	Middle East		
Angola	Angola Telecom	Alcatel	A9800
Bahrain	Batelco	Ericsson	DRA1900
Benin	PTT	Lucent	Swing
Burkina-Faso		Alcatel	A9800
Ivory Coast		Lucent	Swing
Madagascar	a 1	Alcatel	A9800
Mali	Sotelma	Alcatel	A9800
Namibia	Telecom Namibia	Siemens	DECTLink
Pakistan Senegal	Alcatel SONATEL	A9800 Alcatel	40000
Senegal South Africa		Alcatel	A9800 A9800
South Anica	TELKOM	Alcatel	A9800/A9500
	TELKOM	Ericsson	DRA1900
	TELKOM	Lucent	Swing/IRT + DECT
	TELKOM	Siemens	DECTLink
	TELKOM-Bochum	Lucent	Swing
America			-
Argentina	Cooperativa	Siemens	DECTLink
Algentind	Centenario	Sichiens	DEGILINK
Bahamas	Batelco	Ericsson	DRA1900
Bolivia	Comtelco/Entel	Ericsson	DRA1900
_	Cotel	Siemens	DECTLink
Brazil	Sercomtel	Ericsson	DRA1900
	Telepar Telesp	Siemens Alcatel	DECTLink A9800
	Telesp	Lucent	
Chile	CNT Telefonica	Siemens	Swing DECTLink
Cillie	CTC	Alcatel	A9800/A9500
Colombia	Telecom/Emcali	Ericsson	DRA1900
Colonibia	Telecom	Siemens	DECTLink
	Transtel	Siemens	DECTLink
Mexico	TelMex	Lucent	Swing
Paraguay	CITSA	Siemens	DECTLink
Peru	Telefonica	Alcatel	A9800
U.S.A.	ComScape	Ericsson	SuperCordless
Uruguay	Antel	Ericsson	DRA1900
Venezuela	BT	Ericsson	DRA1900
	CANTV	Siemens	DECTLink
Asia Pad	ific		
Australia	Telstra	Lucent	Swing
Burma	Myanmar PTA	Ericsson	DRA1900
Cambodia	CAMINTEL	Ericsson	DRA1900
China	PTA	Ericsson	DECT
	Beijing PTA, GuangX PTA Hunan	Siemens	DECTLink DECTLink
	PTA Hunan PTA Shandong	Siemens	DECTLINK
	Shen Zen	Alcatel	A9800
	Yunan	Alcatel	A9800
India	DOT	Alcatel	A9800
	DOT	C-DOT/NSC	DECT
	DOT	IIT/Midas	DECT
Indonesia	Bukaka Singtel	Lucent	Swing
	Bukaka Singtel	Siemens	DECTLink
	Daya Mitra Malinda		DECTLink
	Pramindo	Ericsson	DRA1900
	Pramindo PT Input	Lucent	IRT+DECT
	PT Input PT Mitra	Lucent Ericsson	Swing DRA1900
	PT Telkom	Alcatel	A9800
	PT Telkom	Ericsson	DRA1900
	PT Telkom	Lucent	IRT+DECT
	PT Telkom (Surabaya)	Siemens	DECTLink
	PT Telkom (Kalimantan)	Siemens	DECTLink
Kirgisia	Kirgiztelekom	Siemens	DECTLink
Malaysia	Telekom	Lucent	Swing

Country	Operator	Supplier	System
Philippines	Islacom	Siemens	DECTLink
	Islacom	Lucent	Swing
	PLDT - Camiquin	Alcatel	A9800
	PLDT - Princess Urduja	Alcatel	A9800
• .	Singapore Telecom	Ericsson	DRA1900
Sri Lanka	Suntel	Ericsson	DRA1900
Thailand	Telekom Asia	Siemens	DECTLink
Europe			
Austria	PTA (OPTV)	Siemens	DECTLink
Belgium	Belgacom	Alcatel	A9800
Bulgaria	BTC	Siemens	DECTLink
Czech Republic	SPT Telecom	Ericsson	DRA1900
	SPT Telecom	Siemens	DECTLink
	SPT Telecom-Brno	Lucent	Swing
Denmark	TeleDenmark	Ericsson	DRA1900
Finland	HTV	Siemens	DECTLink
	HPY-Helsinki	Ericsson	DRA1900
-	Telecom Finland	Ericsson	DRA1900
France	CEGETEL St. Maur	Alcatel	A4200
	CEGETEL Nice	Alcatel	A9500
	CEGETEL Paris	Alcatel	A4200
	CEGETEL Paris	Ericsson	EDT360
Cormon	France Telecom DT-Mobil	Lucent DeTeWe-	Swing DECT
Germany		Hagenuk	
	Mannesmann	Ericsson	DRA1900/GSM
	RWE/Vebacom	Ericsson	DRA1900
	Thyssen Telekom	Siemens	DECTLink
Greece	OTE	Ericsson	DRA1900
Hungary	Deltav	Ericsson	DRA1900
	Digitel 2002	Siemens	DECTLink
	HTCC	Siemens	DECTLink
	Hungartel	Ericsson	DRA1900
	Papatel	Ericsson	DRA1900
Norway	Telenor	Ericsson	DECT
Poland	Elektrim	Lucent	Swing
	NETIA	Alcatel	A9800
	Telek. Debicka	Siemens	DECTLink
	TPSA	Lucent	Swing
	TPSA	Siemens	DECTLink
	TPSA/Ostrowiec		A9800
			A9800
	TPSA/Czestochowa TPSA/Przemysl		A9800 A9800
	IPSA/Przemysi IASI	Alcatel	A9800 A9800
nomania	RomTelekom	Ericsson	DRA1900
Russia	Elektrosviaz	Siemens	DECTLink
	FABSI		DECTLink
	Ros Telekom	Alcatel	A9800
	Samara Koss	Siemens	DECTLink
Slovakia		Lucent	IRT+DECT
	Slovak Telecom		Swing
	Slovak Telecom	Siemens	DECTLink
Slovenia		Alcatel	A9800
			Swing
Spain	Airtel	Ericsson	DRA1900
-	Retevision		A9800
	Telefonica	Alcatel	A9800
	Telefonica	Ericsson	DRA1900
	Telefonica	Lucent	IRT+DECT
Sweden	Telia Mobitel	Ericsson	DRA1900
	Telia Mobitel	Ericsson	DRA1900
	Swiss Telecom	Ericsson	DECT/GSM
Switzerland			Swing
Switzerland	SwissTel Gandria	Lucent	ennig
Switzerland		Lucent	Swing
			0

- Status of Standards

ETS 300 764; Global System
for Mobile
communications (GSM); DECT/GSM Interworking
Profile (IWP);
Implementation of short
message service, point-to- point and cell broadcast;
published 15/05/1997.
ETS 300 755; Data Services
Profile (DSP); Multimedia
Messaging Service (MMS) with specific
provision for facsimile
services; (Service type F,
class 2); published
31/05/1997.
TR 101 072; Global System for Mobile
Communications
(DECT/GSM); Integration
based on dual-mode
terminals; published 30/06/1997.
ETS 300 792; Global System
for Mobile
communications (GSM);
DECT/GSM Interworking Profile (IWP);
Implementation of
facsimile group 3;
published 30/06/1997.
ETS 300 788; Global System for Mobile
communications (GSM);
Integrated Services Digital
Network (ISDN); DECT access to GSM via ISDN;
Functional capabilities and
information flows;
published 15/07/1997.
ETS 300 787; Global System for Mobile
communications (GSM);
Integrated Services Digital
Network (ISDN); DECT
access to GSM via ISDN; General description of
service requirements;
published 15/07/1997.
CTR 6 ed. 2 (DECT radio),
CTR 10 ed. 2 (DECT telephony), and CTR 22
(DECT Generic Access
Profile) have been set into
force by the European Commission. The decision
has been published in the
European Union's Official
Journal of 07/08/1997.
Within 6 months after publication any new DECT
terminal equipment must
comply with the
applicable CTRs.

DECT Forum News Letter

Forthcoming Issues

Forthcoming issues of the DECT Forum News Letter will address special topics such as CTM, DECT world-wide, DECT Data rural and under-services areas, as well as to enhance capacity in high-density areas where existing infrastructure is inadequate to meet demand. The standalone DECT system will be used in high-density areas, while point-tomultipoint radio with DECT will be deployed in more rural areas with little or no existing infrastructure.

DECT IN SOUTH AMERICA

Wireless Local Loop Takes Off in Brazil

Following Brazilian plans to rise teledensity from 10 to 23 main lines per 100 inhabitants until the year 2003, Brazil has become one of the most promising markets of the world. Radio in the Local Loop (RLL) technology is being looked by TELEBRÁS, the operators holding, as one of the key technologies for fulfilling this objective. RLL promises short time for installation, low operation cost and optimum cost-benefit relation, just to name a few of the many properties. Based on these expectations and considering that one third of all the new fixed lines would use RLL solutions, the RLL market is estimated to US\$ 8 billion for the time frame from now to 2003. TELEBRÁS is conducting trials to evaluate various RLL technologies and to provide evidence of full service transparency for subscribers with the same services and voice quality as a wire-line network. Further requirements are high-speed data transmission, operation flexibility and, of course, fast installation.

DECT is the dominant technology within these trials. DECT equipment from various DECT Forum members is under trial operation till the end of 1997.

13 operating companies of the TELEBRÁS group will conduct 23 different trials. Approx-

imately 16 companies are proposing their products to the huge Brazilian market. In view of the large number of individual trial systems, the variety of technologies and the vast number of experts involved, it is fair to say that the knowledge gained from the Brazilian RLL trials will make them one of the most important activities in this field all over the world. Different configurations are tested in order to cope with scenarios ranging from urban and densely populated to rural and remote subscriber locations. For that purpose some equipment includes hybrid configurations of Point-to-Multipoint radio backhaul together with DECT coverage for the last part of the wireless loop. The current plans foresee installation of system at least 90 RLL subscriber terminals for each trial system. Interviews with the customers will be conducted to collect their comments concerning the telephone service during the trial period. In Latin America, Fixed Wireless Access within 1910-1930 MHz is also under tender, ordered or even in commercial operation in Argentina, Bolivia, Colombia, Chile, Ecuador, Uruguay, and Paraguay, using DECT for the provision of services in an economical and effective way The Local DECT Forum Brazil has highly contributed to these results.

A large number of handsets for business, public, and residential use is currently available on the market. See the next issue of the News Letter for a list of available products.

1st column, front to back: Philips C911; Philips C311; DeTeWe Twinny; DeTeWe Varix M2; Bosch DECT-COM 557; Bosch DECT-COM 757. 2nd column: Hagenuk OfficeHandy; Hagenuk HomeHandy; SDX INDeX DH1; Ascom Avena, Ascom Ayato; Ascom Adesso. 3rd column: Siemens Gigaset 2000P; Siemens 2000C; Siemens 1000C; Siemens 1000S; Samsung SP-R5050; Samsung SP-R5000; Samsung SP-R5060. 4th column: Kirk dect-z; Alcatel 4074B; Alcatel 4074 H; Ericsson DT 360; Ericsson DT 120; Ericsson DT 310; Ericsson TH 337. 5th column: Sanyo DECT o2; Binatone Unit 1.